Sale!
Placeholder

COMPARATIVE ANALYSIS OF VOID FRACTION CORRELATIONS FOR HIGH VISCOSITY OIL DATA IN HORIZONTAL PIPELINE

10,000 3,000

Topic Description

 ALL listed project topics on our website are complete material from chapter 1-5 which are well supervised and approved by lecturers who are intellectual in their various fields of discipline, documented to assist you with complete, quality and well organized researched materials. which should be use as reference or Guild line...  See frequently asked questions and answeres



1 INTRODUCTION
The oil and gas industry is increasingly looking towards unconventional
resources like heavy oil to help satisfy world energy demand as conventional
reserves are continuously depleted due to several years of production and
consumption. Viscous oil hydrodynamic characteristics are different from
conventional oil (light) due mainly to its physical properties .As a result of these
significantly different physical properties, heavy oil is more challenging to
produce and transport. The major implication of these differences is seen in the
design of heavy oil systems as well as in the implementation of technologies
which were mostly developed on the basis of hydrodynamic characteristics of
liquid oil.
High-viscosity oils are discovered and produced all around the world.
High-viscosity or “heavy oil” has become one of the most important future
hydrocarbon resources, with ever-increasing world energy demand and depletion
of conventional oils.
Almost all flow models have viscosity as an intrinsic variable. Two-phase
flows are expected to exhibit significantly different behavior for higher viscosity
oils. Many flow behaviors will be affected by the liquid viscosity, including droplet
formation, surface waves, bubble entrainment, slug mixing zones, and even
three-phase stratified flow. Furthermore, the impact of low-Reynolds-number oil
flows in combination with high-Reynolds-number gas and water flows may yield
new flow patterns and concomitant pressure-drop behaviors.
Void fraction prediction in high viscous liquid is of great importance .This
is because most existing correlations for predicting two phase flow parameters
were developed based on observations from low viscosity liquid gas flows which
have different hydrodynamic features compared to high viscosity liquid gas flows.
Consideration of these prediction models will ensure that pressure drop is
accurately predicted (Oyewole 2009)

Water is a low viscosity fluid; syrup is a high viscosity fluid. With oil, like
syrup, as you increase the temperature, the viscosity lowers, meaning it flows
faster, or more easily.
The most common unit of measure for viscosity is the Kinematic viscosity
and this is usually quoted in data sheets at 40°C and 100°C. The commonly used
unit of measure is centistokes but the correct SI unit of measure is mm2/s.
Absolute Viscosity is a measure of a fluid’s internal resistance to flow and
may be thought of as a measure of fluid friction and of the oil’s film strength to
support a load.
Dynamic or Absolute Viscosity: 1 milliPascal second (mPa·s) = 1 centi-Poise
(cP)
1.1 Statement of problem
With the decline of conventional oil reserves, heavy oil with significantly high
viscosity is seen as a major potential resource to meet the world increasing
energy demand .Void fraction prediction in high viscous liquid is of great
importance. This is because most existing empirical correlations for prediction
two phase flow parameters were developed based on observations from low
viscosity liquid-gas flows which have different hydrodynamic features compared
to high viscosity liquid –gas flows. Consideration of these prediction models will
ensure that pressure drop is accurately predicted. This will have significant impact
on the design and specification of downstream facilities.
1.2 Aim
The project aims to carry out an appraisal of existing void fraction correlations
using data for high viscosity oil gas two phase flows in horizontal pipes.

1.3 Objectives
1. To compare high viscosity void fraction data with those of prediction from
existing correlations.
2. To carry out a detailed statistical analysis of these correlations.
3. To determine the best performing ones for high viscous oil data.
1.4 Justification
1. Increased growth in global energy consumption.
2. Depleting light resources.
3. Reserves of heavy resources.
4. The need for proper understanding of the behaviour of heavy oil.

GET COMPLETE MATERIAL

INQUIRES:

OUR SERVICES: